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Adiabatic transverse waves in a rotating fluid 

By C .  SOZOU AND J. SWITHENBANK 
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(Received 30 December 1968) 

Adiabatic disturbances propagating as transverse waves in an inviscid fluid 
rotating as a Rankine vortex about the axis of its cylindrical container are 
considered. The propagation of the first mode of the first two harmonic waves 
has been investigated. Relative to a fixed co-ordinate system, for each harmonic, 
there are three waves. Two waves are rotating in the same direction as the fluid, 
one faster and the other slower than the core of the fluid, and one wave rotates 
in the opposite direction. The latter is stable and relative to the core of the rotat- 
ing fluid it is the fastest wave. Relative to the container, the other two waves 
are speeded up by rotation. However, relative to the rotating core, the angular 
velocity of the fast wave decreases when the fluid is speeded up, and when it is 
zero the wave breaks down. As the region of potential flow decreases the angular 
velocity of the slow wave increases and its amplitude decreases, and in the limit 
of vanishing potential flow, the wave rotates as fast as the fluid and its amplitude 
tends to zero. 

1. Introduction 
Rotating fluids, due to their importance in connexion with geophysical pheno- 

mena and engineering applications, have been studied by many authors. A 
survey of rotating fluids can be found in a recent paper by Lighthill (1966). 

In many practical applications, such as combustion chambers of solid pro- 
pellant rocket motors, the rotation of the fluid is associated with strong trans- 
verse waves which give rise to intense vortices. Such waves and vortices have 
been observed and reported by Swithenbank & Sotter (1964). When the cylindri- 
cal walls of the chamber are composed of burning propellant, the flow normal 
to the surface and the combustion process drive the waves with a wide band 
amplification (Cantrell & Hart 1964). 

Several other experimental observations have been reported, and when flow 
is introduced tangentially at  the periphery of a cylindrical chamber, and ex- 
hausted at  an axial nozzle, a Rankine-type vortex is observed (Keyes 1960, 
Roschke & Pivirotto 1965). At diameters greater than that of the nozzle, con- 
servation of angular momentum must cause the formation of a potential vortex, 
although in practice, due to viscous dissipation, the vortex is not quite potential. 
The tangential velocity attains a maximum value at  a radius of between 0.5 
and 0.9 of the nozzle radius, depending on such parameters as the length/diameter 
ratio of the chamber, and the vortex core contains essentially solid-body 
rotation. 
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The solution of the full Navier-Stokes equations for a rotating fluid is very 
difficult, and authors introduce simplifying assumptions in order to obtain a 
mathematical solution to the problem. Maslen & Moore (1956) obtained a solution 
for transverse (tangential) waves in a viscous heat-conducting but stagnant gas 
contained in an infinitely long circular cylinder. Sozou considered an inviscid 
compressible gas and investigated symmetrical-radial waves when the fluid 
is rotating as a Rankine vortex (1969a), and transverse waves in a fluid having 
uniform solid-body rotation (1969 b)  about the axis of its cylindrical container. 
Here we extend the latter work and investigate waves in a fluid rotating as a 
Rankine vortex about its axis. It is reported below that in the present flow 
regime there exists a further set of waves which we have termed ‘slow waves’; 
also, under certain conditions, some waves break down and are unable to 
propagate. These phenomena are alien to the two flow regimes investigated 
previously. 

2. Equations of the problem 
We assume that our gas is contained in an infinitely long cylindrical cavity 

of radius d ( =a b; b > 1). We use a fixed polar co-ordinate system (R, 8, z) with 
the z-axis along the axis of symmetry of the cavity. The steady-state core of the 
gas is of radius a and rotates with constant angular velocity Q about the z- 
axis. In  the region R > a we have potential flow and the angular velocity of 
the fluid is a2!2/R2. We also assume that our gas is perfect and the entropy is 
constant throughout the flow field, that is, we ignore gravity and assume that 
the pressure p and density p of the gas are connected by the relation 

P = A P ,  
where A and y are constants, y being the ratio of the specific heats of the gas. 

If we non-dimensionalize our quantities by 

R = ar, c o w  = c(r)c,(O), pow = p(r)p,(O), = wc,(O)/a, v, = C,(O)V, 
where V, is the fluid velocity, c,(R) is the speed of sound andp,(R) the gas density 
in the steady state, the integral of the momentum equation becomes 

= {$ [ (y-  l )w2r2])+ 1 (0 6 r 6 l), 

= + 1  (1 6 r 6 b),  
c2  = pY-1 

and V is given by 

We consider a two-dimensional perturbation (a/& = 0) of this state. The case 
of purely radial disturbances (a/aO = 0) has been considered elsewhere (Sozou 
1969a) and here we will be concerned with transverse waves. Thus, we let 

p, = p ; ( ~ )  &@zt-@, 

and V, = (u, v, 0) = (u’(r), v ’ ( r ) ,  0) eiK(ozt-o), 
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where the suffix 1 refers to the perturbation quantities, K is the order and w2 
the angular velocity of the wave. The interface between the core and the poten- 
tial annulus of the vortex is 

where e is small. 
If we now substitute the above relations in the continuity and the momentum 

equations making use of (2), eliminate the pressure by using the equation of 
state, and omit primes, to a first-order approximation, we obtain the following 
two sets of equations: 

r = 1 + 6 eiW%2t-B), 

iK(w2 - w)v  + 2wu - iKc2p,/pr = 0,) ( 5 4  

( 3 b )  iK(r2w2 - w )  p ,  + r 

Equations ( 4 b )  and ( 5 b )  show that the fluid velocity of the disturbance in the 
region r 2 l-that is, in the region of potential flow-is derivable from a poten- 
tial. This is due to the fact that the disturbance was assumed to be isentropic. 

If we eliminate p1  between ( 3 )  and (5) and between (4) and (5)) and then 
eliminate v between the resulting pair of equations, we obtain two second-order 
linear differential equations in u. If we then use (1) and eliminate c and p these 
equations become 

d2u du fo(r) @ +flW & +f2(r )u  = 0 (r 11, 

where 

fo = r2(ao+a,r2+a2r4), f,(r) = r (bo+b,r2+b2r4) ,  
f 2  = c,+ clr2 + c2r4, 

g, = r(e, + el++ e2r4 + e3r6),  
go = r2(d, + d,r2 + d2r4 + d,r6), 

g2 = h, + h, r2 + h2r4 + h3r6 + h,r8, 
and 

a, = 4(W2-W),  a, = 4 ( w 2 - w )  [ (y -  1)w2-(w2-w)2] ,  
a2 = (7- I ) W ~ ( W ~ - U )  [ ( y -  1 ) ~ ~ -  2 ( ~ 2 - ~ ) ~ ] ,  

b, = 4(w2 - O )  [ (37 - 2)w2 - ( ~ 2  - w ) ~ ] ,  

b2 = ( 3 y - 1 ) ( ~ 2 - ~ ) ~ ~ [ ( y - l ) ~ ~ - 2 ( ~ ~ - ~ ) 2 ] ,  

C ,  = 4( 1 - K 2 )  (w2 - W )  [ (7 - 1 ) ~ '  - 2(0, - w)'] + 4w;(3w2 - 5w), 

b, = 12(w2-w) ,  

C, = 4(w2--)(l-K2), 

43-2 
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c2 = [ (y -  1)d-  2(w2-w)2]{ ( w 2 - w )  (1  -K2) [ (y -  1)wZ- 2(w,- w)*]  

d, = 4[ (y  - 1)&+ 13 [1+ (y-  1)w2+ 2wwJ + 2(y - 1 )  w";, 

+ 2w;(w, - 3w)}, 
do = ( y2  - l)w4, d, = - 4w2{y[ (y - 1)w2+ 11 + (7 - l)ww2), 

d3 = - 4 4 [  (y - I)@'+ 11, 
e,, = (3y2 - 27 - 5)04, 

e2 = 12[(y-  I )&+ 11 [ ( y -  I )&+ 2ww2+ 11 - 2 ( y +  1)w2~2, ,  

e3 = - 4w2,[ (y -  1)w2 + 11, 

e, = 4w3w2(3 - y )  - 4w2(3y + 1)  [ (7 - 1)w2 + 11, 

ho = - [ ( y + 1 ) W  - (y2 - 2y - 3) 104, 

h, = 4K2(y + 1)w2[ (y - 1)w2 + 2ww, + 11 - 4w2{ [ ( y  - 1 ) d +  11 (y + 3) 

h2 = - 4K2{ [ (y - 1)w2 + 2ww2 + 1 1 2  + (y  - l)w%J;) 

h3 = SK2w;[ (y - 1)w2 + 2ww2 + 11 + 4 4  (y - 1)w2+ 11 

+ (3  - y)w02)7 

+ 4[ (7 - 1 ) ~ '  + 11 [ (7- 1)w2+ 2 ~ ~ 2  + 11 + 6 ( 3  -y)w2wt,  

and 
h, = -4K2@%. 

Thus we have to solve (6a )  in the region 0 6 r 6 1, and (6b)  in the region 
1 6 r 6 b. The boundary conditions are: 

u(0)  finite, u(6) = 0, 

and continuity of fluid velocity and density across r = 1; that is, 
d d 2u(  1)w 
dr dr w 2 - w  

AU = 0 and - u ( ~ + o ) - - u ( ~ - o )  = -. 
The last boundary condition is obtained from (3a),  (5a), (3b) and (5b). 
The expressions 

c2 - r2(02 - w)2 and c2r2 - (r2w2 - 

are factors off,, and go respectively. Thus, fo and go may have zeros in 0 6 r 6 1 
and 1 6 r 6 b, respectively. In  order to investigate the behaviour of u at these 
zeros we note that ( 6 a )  and (6b) can be expressed in the form 

where x = r - r,,, ro being the value of r at which fo or go vanishes. F(x)  and g(x) 
are functions, different for ( 6 a )  and (6b), which are regular and non-zero near 
the origin. The condition that ( 7 )  should have two regular solutions with finite 
derivatives at the origin is ~ ( 0 )  g'(o) = g2(o). 

On doing the arithmetic we find that F and g associated with ( 6 a )  and (6b)  
satisfy this condition at  the respective zeros of f o  and go, and therefore u and 
all its derivatives are finite at  these zeros. But if these zeros occur at  the inter- 
face-that is, if c(1) = Iw,-wl-the boundary condition expressing the con- 
tinuity of density across the interface becomes 
(w2 - w )  [d2u( 1 + O)/dr2 - 2u(  1)  (c4( 1)  + 3w2c2( 1 )  - 2w2)/c4( 1)]/( 1 + 2ww2 - 2 4 )  

= ( w 2 - w )  [d2u(1 - O)/dr2+ 2 u ( l )  (w2-w:c2(1))/c4(1)]- 2ww;u(l)/c2(1). 
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3. Method of computation 
Equations (6a)  and (6b) are solved by iteration as follows. For a specified w ,  

we guess an w2 and start from the origin for (6a) ,  and from r = b for (6b ) ,  satisfy 
the boundary conditions there, and proceed towards r = 1. Over the first five 
steps from the origin the solution is obtained by using the series expansion of 
u, and over the first five steps from r = b the solution is obtained by using the 
Runge-Kutta method. Thence we build up the solution by using Hamming’s 
predictor corrector method (cf. Ralston & Wilf 1961). 

Since the solution involves only complementary functions, we choose 
uK-l(O) = ( K -  l ) !  for the Kth harmonic, multiply the solution obtained in the 
region r 3 1 by an appropriate constant, and make u continuous. The remaining 
boundary condition at r = 1 is not satisfied and we use Newton’s method for a 
new value of w2. This process is repeated, until the second boundary condition 
at  r = 1 is satisfied to a high degree of approximation (inaccuracy < 0.0002). 

The computations were performed on the 1907 I.C.L. Computer of Sheffield 
University. 

4. Results and discussion 
We have taken y as 1.4 and computed the first mode of the first two harmonics 

( K  = 1 and 2) for several sets of data. Results of these computations are shown 
in figures 1-8 and in tables 1-3. 

When the fluid is at rest, for a particular harmonic and mode, there are two 
transverse waves propagating in opposite directions with the same angular speed. 
When the fluid is rotating as a Rankine vortex about the axis of its cylindrical 
container the wave propagating in the direction of fluid rotation is speeded up. 
The amplitude of this wave, relative to its amplitude near the origin, increases 
with w (see figures 1, 2). The boundary conditions show that there is a discon- 
tinuity in the first derivative of u at the interface. For this particular wave this 
derivative becomes larger on crossing the interface and increases with w .  Though 
w2 increases with w ,  dw21dw < 1. Thus for some critical value of w ,  say wc, w2 
becomes equal to w .  When this stage is reached, du( 1 + O)/dr and u in the region 
of potential flow become infinite. 

It must be noted that when w = w, = w2, f,, andf, vanish and (6a)  becomes 

f2(r)u = 0 
and the only plausible solution of this equation is u = 0. The difficulty is there- 
fore partly due to the way in which we non-dimensionalized the amplitude of 
the disturbance. Thus, if we had set 

uK-I(O) = ( W 2 - W ) ( K -  l ) !  

( w2 - w)u’( 1 + 0)  

the solution would tend to the correct limit, for r < 1, as w tends to w,. However, 
as w increases 

also increases (for example when w is 0, 0.50, 1 and 1.25 it is 0.64, 0.70, 5.7 and 
64 respectively, for K = 1 and b = 2). Thus, it seems that as w -+ w,, this quantity 
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tends to infinity, that is, on crossing the interface the wave again becomes 
vertical, and therefore very large in the region of potential flow, and the solution 
breaks down. 
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0.2 0.4 0.6 0.8 

Radius d 

9 

FIGURE 1. Amplitude of u (with u(0) = 1) as a function of the radial distance from 
the origin for the first-order harmonic wave propagating in the direction of fluid rotation, 
for various values of the parameters w and b. The core radius is d/h.  
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FIGURE 2.  Amplitude of u (with u'(0) = 1) as a function of the radial distance from the 
origin for the second-order harmonic wave propagating in the direction of fluid rotation, 
for various values of the parameters w and b .  The core radius is dlb.  
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When w -+ w, the assumption that the amplitude of the disturbance is small, 
which also implies small wave vorticity, is no longer valid and the linearized 
equations are no longer descriptive of the disturbed configuration. When 
w = w, the wave is in resonance with the frequency of the core of the rotating 
fluid, and this breakdown is possibly a resonance phenomenon. It is, however, 
significant that the wave cannot propagate in this particular mode when w > wc, 
and this suggests that the refraction effects, caused by the velocity gradients, 
may be related to this breakdown. 

In  the case of uniform solid-body rotation (Sozou 1969b) and also in the case 
of radial (symmetrical) waves in Rankine vortex flow (Sozou 1969a) no break- 
down of the flow regime occurs. 

The numerical solution converges very rapidly when w is not close to 0,. 
As w + wc, and the amplitude of u becomes large, the convergence is very slow. 
Our computations indicate that when b, the ratio of the radius of the cylindrical 
container of the fluid to the radius of the core, is 2,  3 and 5 ,  w, is about 1.45, 
0.707 and 0.385 respectively when K is 1 .  When K is 2 the respective values of 
wc are about 1.36,0.64 and 0.33. These points are indicated by circles on figure 5. 

In  comparing the wave frequencies with the various vortices it is worth re- 
calling that, in dimensional units, the angular velocities of the wave s1, and of 
the core of the rotating fluid Q, are 

w,c,(O)/a = w2co(0)b/d and wc,(O)/a = wc,(O)b/d (8) 

respectively, Thus, in our vortex the angular velocity of the core is inversely 
proportional to its radius. For a given d, increasing b by a factor A is equivalent 
to speeding up the core of the vortex by the same factor and changing its radius 
by a factor of 1/A. 

For the data considered here bwc(b) ( w @,/a) is a decreasing function of b. 
If this is true for all b then wc tends to zero faster than a, and in the case of pure 
potential flow with an infinite vortex at  the origin these waves cannot propagate 
in these modes. 

Rotation depresses the amplitude of waves propagating opposite to the direc- 
tion of fluid rotation, especially in the region of potential flow, as is quickly 
verified by inspection of figures 3 and 4 showing amplitudes of such waves. 

The second boundary condition implies that, for these waves, duldr decreases 
on crossing the interface. As is seen from figure 3, for a large potential flow 
annulus and large fluid angular velocities, the first-order harmonic waves tend 
to become vertical across the interface. However, these waves as well as the 
second-order harmonic waves (figure 4), exist for all the flow regimes investi- 
gated, and do not seem to break down. 

Tables 1 and 2 show some of the computed values of w2 for various values of 
w and b. Table 1 refers to the first (K  = 1 )  and table 2 to the second ( K  = 2) 
harmonic wave. 

Relative to the rotating core of the fluid, for a given vortex (w and b) ,  the 
waves propagating in the direction of fluid rotation are always slower than 
the waves propagating in the opposite direction, as can easily be verified from 
the data of tables 1 and 2 .  
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Figure 5 shows the normalized wave angular velocity w2b as a function of w 
for various vortices shown in tables 1 and 2 .  

From figure 5 and tables 1 and 2 we deduce the following. For a given core 
angular velocity, the normalized wave angular velocity w2b is maximum in the 

" 
0 0.2 0.4 0.6 0.8 1.0 

Radius d 

FIGURE 3. Amplitude of u (with ~ ( 0 )  = 1) as a function of the radial distance from the 
origin for the first-order harmonic wave propagating opposite to the direction of fluid 
rotation for various values of the parameters w and b. The core radius is d/b. 

0 
Radius d 

FIGURE 4. Amplitude of 'u (with ~ ' ( 0 )  = 1) as a function of the radial distance from the 
origin for the second-order harmonic wave propagating opposite to the direction of fluid 
rotation for various values of the parameters w and 5. The core radius is d/b.  

case of solid body rotation (for any wb constant, w2b is maximum when b is 1, 
see tables 1 and 2) in agreement with the case of symmetrical waves (Sozou 
1 969 a)  . 

For waves propagating opposite to the direction of fluid rotation (w negative) 
w,b decreases for small values of w. I n  the case of the first-order harmonic wave 
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w2b quickly reaches a minimum, and thence, as the fluid is speeded up, it 
increases, and for large fluid velocities these waves, which are slower for solid- 
body rotation (see the broken curves of figure 5 ) ,  are much faster than in the 
absence of fluid rotation. For second-order harmonic waves, and the range of 

w 

- 2.00 
- 1.50 
- 1.00 
- 0.50 
- 0.25 
- 0.10 

0 
0.10 
0.25 
0.50 
1.00 
1.25 

b = l  
2.5662 
2.2234 
1.9852 
1.8428 
1.8221 
1.8267 
1.8412 
1.8608 
1.9050 
2.0159 
2,3750 
2.6123 

b = 2  
1.7256 
1.3942 
1.1277 
0.9595 
0.9228 
0.9167 
0.9206 
0.9297 
0.9534 
1.0177 
1.2177 
1.3414 

b = 3  
1.1191 
0.9209 
0-7544 
0.6439 
0.6198 
0.6126 
0-6137 
0-6184 
0.6314 
0.6688 

b = 5  
0,6303 
0.5297 
0.4444 
0.3861 
0.3715 
0.3681 
0.3682 
0.3702 
0.3765 

TABLE 1. Values of w z  for K = 1 

b = 10 

0.2187 
0.1928 
0.1860 
0.1843 
0.1841 
0.1848 

w b = l  
-2.00 0.7477 
-1.50 0.8746 
-1.00 1.0390 
-0.50 1.2518 
-0.25 1.3804 
-0.10 1.4662 

0 1.5272 
0.10 1.5912 
0.25 1.6937 
0.50 1.8826 
1.00 2.3307 
1.25 2.5876 

b = 2  
0.3492 
0.4132 
0.4996 
0.6146 
0.6845 
0.7308 
0.7636 
0.7978 
0.8520 
0.9504 
1.1770 
1.3041 

b = 3  
0.3277 
0.3525 
0.3865 
0.4360 
0.4621 
0.4922 
0.5090 
0.5270 
0.5562 
0.6106 

b = 5  b = 10 
0.2971 
0.2861 
0.2789 
0-2827 
0.2913 
0.2990 0.1512 
0.3054 0.1527 
0.3130 
0.3253 - 

TABLE 2. Values of o ) ~  for K = 2 

angular velocities considered here, if b is not very large, w,b decreases mono- 
tonically as w increases. However, for large potential region vortices-for 
example, when b is 5-w2b reaches a minimum, and thence it increases with w .  

For a given fluid velocity at  the core boundary-that is, for a given o, as 
the size of the core decreases and the region of potential flow increases (from 
zero)-the wave angular velocity, when K is 1, increases until it reaches a maxi- 
mum, depending on w ,  and thence it decreases with the size of the core. The 
second-order harmonic waves exhibit the same behaviour for positive w and 
precisely the opposite behaviour for negative w.  

If account is taken of the dependence of the temperature at  the centre of the 
cavity, and thus of c,(O) on rotation, the above interpretation of our results 
may need some modifications, since Q and 0, are proportional to c,(O). 

Besides the waves discussed above there is another train of waves propagating 
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in the direction of fluid rotation. These waves lag behind the rotating core of 
the fluid and are termed ‘slow waves’ in order to be distinguished from the waves 
rotating faster than the core, in the same direction. Since w > w2, the second 
boundary condition implies that the amplitude of these waves decreases on 
crossing the interface, and our computations show that it decreases monatomic- 
ally from the interface t o  the boundary. Amplitudes of these waves, for various 
parameters, are shown in figures 6 and 7 for the first and second harmonic waves, 
respectively. 

I I I I I I I I 

w 

FIGURE 5. Normalized wave angular velocity w,b as a function of w .  The broken and solid 
curves refer to  the first and second harmonic ( K  = 1, K = a), respectively. 1, 2, 3 and 5 
refer to the cases when b is 1, 2, 3 and 5 respectively. For positive w ,  curve ‘3’ is very 
close to ‘1’. 

For all the parameters investigated, most of which are shown in table 3, the 
first-order slow harmonic waves exist. The second-order slow harmonic waves 
exist when the potential annulus is not very large. As w increases, the amplitude 
of these waves, mainly in the potential flow region, becomes depressed. For a 
vortex having a sufficiently large potential annulus and an appropriate core 
angular velocity the amplitude of these waves changes sign in the potential 
flow region; that is, these waves cannot propagate in this particular mode; 
for example, when b is 5 the second-order slow harmonic wave breaks down for a 
value of w between 0.4 and 0.5. 

As the potential annulus of the flow regime decreases, the wave velocity 
increases and approaches the angular velocity of the core. In the limit, of no 
potential annulus, the two angular velocities are equal and the amplitude of the 
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0 0.2 0.4 0.6 0.8 1.0 
Radius d 

FIGURE 6. Amplitude of u (with u(0)  = 1) as a function of the radial distance from the 
origin, for the first-order slow harmonic wave, for various values of the parameters w 
and b. The core radius is dlb. 

u u 

0.2 0.4 0.6 0.8 1.0 

Radius a 
FIGURE 7.  Amplitude of u (with u'(0) = 1) as a function of the radial distance from the 
origin, for the second-order slow harmonic wave, for various parameters of w and b. 
The core radius is dlb. 

w 
2 
1.5 
1.0 
0.75 
0.50 
0.25 
0.25 
0.25 
0.10 
0.10 
0.10 

b 
5 
5 
5 
5 
5 
5 
1.5 
1.09 
5 
1.5 
1.09 

K = 1, 
a 2  

0.0769 
0.0582 
0.0392 
0.0296 
0.0199 
0~0100 
0.1105 
0.2099 
0.0040 
0.0444 
0.0841 

K = 2, 
Wa 

- 
- 
- 

0.1246 
0.1490 
0.2132 
0.0050 
0.0598 
0.0854 

b 
2 
2 
2 
2 
2 
2 
1.2 
1.03 
2 
1.2 
1.03 

K = 1, 
0 2  

0.4519 
0.3454 
0.2367 
0.1807 
0.1222 
0.0622 
0.1729 
0.2353 
0.0250 
0.0694 
0.0942 

K = 2, 
WZ 

0-8719 
0.6948 
0.4941 
0.3814 
0.2603 
0.1321 
0.1848 
0.2359 
0.0531 
0.0741 
0.0944 

TABLE 3. Slow waves. 



668 C. Xozou and J .  Xwithenbank 

wave is zero. Thus these waves are a special feature of the Rankine vortices, 
and do not exist in the case of pure solid-body rotation. Due to the manner of 
non-dimensionalization of our quantities, it  is not shown in figures 6 and 7 that 
the amplitude of these waves tends to zero as b tends to 1. However, as shown 
for the fast waves, as w2 tends to w ,  by the appropriate non-dimensionalization, 
u tends to its correct limit zero for Y 6 1; that is, as b tends to 1, the maximum 
amplitude of these curves, a( I ) ,  tends to zero. 

o= 0.25 

o.2 0 L F L  W = W 1  

1 2 3 4 5  
b 

FIGURE 8. (a) 02b2 as a function of b for the first-order slow harmonic wave. (6) w2 as 
a function of o for the second-order slow harmonic wave for various values of t,he para- 
meter b .  

Mathematically the frequency of the slow waves is the manifestation, due to 
rotation, of the first zero (the trivial case w2 = 0) of the Bessel functions of 
integral order greater than 0, which provide solutions of our problem, when w 
is zero. 

The angular velocity of the first-order slow harmonic waves, for w 6 0.5, 
fits very well into the formula 

w2 = w/b2 - wa2, ( 9 )  

i.e. w2 is proportional to the total angular velocity of the core. For larger values of 
w and moderate values of b this formula is only approximately correct; for ex- 
ample, when w is 2, the computed value of w2 corresponding to b = 2 and 5 is 
less than that given by the above formula by about 9.5 and 4%) respectively. 

For the range of angular velocities considered here the w2 corresponding to 
the second-order harmonic wave is very nearly proportional to w for w 6 0.5, 
though the constant of proportionality depends on b. For larger w ,  do2/dw is a 
slowlydecreasing functionof w ,  as can be seen by inspection oftable 3 or figure 8(b).  

5.  Applications 
Our results concerning slow waves are in excellent agreement with experi- 

mental observations of sound generated by the escape of a vortex from the open 
end of a tube, known as the vortex whistle. Experiments carried out by 
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Vonnegut (1 954) show that when the fluid leaves the tube in which it is rotating, 
the vortex becomes unstable and whips around at  an angular velocity about the 
same as its rotational velocity. The sound emitted has the precession frequency 
of the unstable vortical motion. Our results suggest that this is due to the fact 
that the periphery of the escaping fluid, by coming into contact with the open air, 
acquires an angular velocity different from that of the core, thus enabling the 
slow waves to propagate. The flow regime is almost entirely core and the fluid 
and wave angular velocities are equal, in agreement with our results. 

Detailed experiments carried out by Chanaud (1963) show that the sound field 
of the vortex whistle is that of the first harmonic and corresponds to a rotating 
dipole in the plane of the tube exit. Figure 6 shows that the particle velocity (and 
hence displacement) of the core associated with the first-order slow harmonic 
wave is almost constant with radius. It therefore follows that the sound field 
associated with this wave corresponds to a rotating dipole. 

Chanaud’s experiments with a water vortex showed that when the core 
almost filled the whistle tube, the frequency of the whistle was within 10% of 
the rotational speed of the core, again in reasonable agreement with our theory 
(figure 8, table 3). By varying the vortex tube length L and thus the thickness 
6 of the boundary layer, which may be interpreted as our potential annulus, 
Chanaud found that the decrease in the whistle frequency was larger than the 
decrease in the average fluid angular velocity. Our theory suggests that this 
discrepancy is due to the fact that the wave frequency of the first harmonic is 
proportional to the total angular velocity of the core (see (9) of §4), and not 
of the whole fluid, Simple arithmetic shows that the predictions of our theory 
are in very good agreement with these experimental observations. If we let 
R(dl) denote the Reynolds number based on the tube diameter d,, and assume 
that the boundary layer was turbulent (R(d l )  was 4950), with 

then b % 1/(1-26/4).  
On using (9) we obtain 

L t.2 
w 2 / ( w 2 ) 0  = 1/b2 = [I -K’ (&) ] J 

where the subscript zero refers to L = 0. 
In  figure 9 we compare theory and experiment, with K’ being evaluated from 

Chanaud’s results when L / d ,  is 10. 
It appears that ours is the first theoretical prediction of the slow waves and 

their association with the vortex whistle. 
Recently Gyarmathy (1968) made optical measurements for a high-speed 

gaseous vortex rotating in 8 tube very much like our Rankine vortex. His ‘b’ 
was 7.26. Gyarmathy inferred from his measurements that the core was rotating 
at  one million revolutions per minute and the fluid velocity at the periphery of 
the core was 1.6 times the local speed of sound. Two distinct density fluctuations 
were observed. A fast fluctuation having a frequency of the order of lo4 c/s and 
regular sine structure and an irregular relatively slow fluctuation lying roughly 
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in the region of 300-500 c/s. This slow fluctuation is absent at large distance 
from the axis. For this vortex our first-order slow harmonic wave has a frequency 
317 c/s. Gyarmathy’s data would make our w & 1.6 and give a first-order ‘fast’ 
wave propagating opposite to the direction of fluid rotation with a frequency 
5000 CIS. 

0.2 
1 2 5 10 20 

Lld l  

FIQTJRE 9. Our slow-wave frequencies for the first harmonic (broken curves) and Chanaud’s 
experimental results for a water-vortex whistle (reproduced with the kind permission of 
the J .  Acoust. SOC. America). The curves have been matched where L is loci,. - - -, theory. 
Chanaud: 0, d, = 0.225 in. ; 0, d, = 0-449 in. ; A, d, = 0-652 in. 

To our knowledge, there is very little experimental data on acoustic waves in 
vortices. Direct experimental evidence of the fast-wave breakdown is not yet 
available. Indirect evidence is provided by the fact whilst several cases of 
waves travelling opposite to the direction of fluid rotation have been recorded 
(Swithenbank 1965), it appears that there are no examples of waves travelling 
in the direction of fluid rotation. 

Evidence for the quantitative effect of w on the wave velocity is also sparse 
and the main source is studies of oscillatory combustion in solid propellant 
rocket motors. Swithenbank & Sotter (1964) in their experiments in connexion 
with solid propellant rocket instability observed the first-order (first mode) 
harmonic wave going opposite to the direction of fluid rotation. The fluid velocity 
at the edge of the core, which had a diameter -0.75 in., was approximately 
equal to the local speed of sound; that is, w N - 1 and c,(O) was about 3200 ft./ 
see. The diameter of the tube was -4 in., though the flow regime outside the 
core, due to viscous dissipation was not quite potential. This would make our 
b - 5-3 and w2 - 0.41, where w2 is extrapolated from table 1, and give a wave 
frequency - 6.7 kc/s. The observed oscillation frequency varied between 5 and 
10 kc/s. 

Otherworkersstudying a comparable system (Angelus 1960,~ .  527; Brownlee & 
Marble 1960, p. 455) report that the observed frequencies of the transverse waves 
are in general agreement with the value obtained from simple acoustic theory 
without fluid rotation. If we assume, as will most probably be the case in practice, 
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that the total temperature at the edge of the core will be approximately the 
same as when the fluid is stagnant, we will have 

cO(o), = ~0(0)0/[1+ (Y - 1)w2/214 N 0*9~0(0 )0  

when o N & 1, where c,(O), denotes the value of c,(O) when w is x. Thus, for 
comparison with the frequencies corresponding to stagnant gas we must multiply 
our w2(w) by a factor 1/[1+ (7- l)02/2]4. When w is - - 1 this would make the 
frequencies of the first harmonic predicted by the theory about 8% higher than 
the frequencies corresponding to the case when the gas is stationary. The experi- 
mental results could be in error by up to 10% and thus our theory is also in 
general agreement with these observations. 

Our investigations have shown that whilst available experimental results 
are in broad agreement with the theory of the fast wave presented here, further 
experiments are required to  verify the theory in detail. 
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